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NJL Model
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So we have an effective lagrangian at scale   :Λ

Which has a SU(N) Chiral symmetry.
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Integrate out massive gluon:
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and work with fermion bubble approximation:

Perform a Þeld redeÞnition with an auxiliary Þeld H:
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NJL Model

L µ = i !̄ L /"! L + i !̄ R /"! R + g̃H !̄ L ! R + h.c. + " µ H " µ H   ! m̃2|H |2 ! #̃|H |4
Which produces an effective Lagrangian

L = i ø! L /"! L + i ø! R /"! R + g ø! L ! R H + h.c. ! ! 2|H |2
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1 !
g2Nc

8! 2 < 0

µ ! !For          H develops a vev for critical values of the gauge 
coupling:

Chiral Symmetry spontaneously broken.

Top Condensation
At the low scale    the higgs mass is:µ

÷m2 =
2
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NJL model: Nambu, Jona-Lasino 
Top Condensate model: Miransky, Tanabashi, 

Yamawaki, Bardden, Hill and Linder

mt = 170GeV

so for
the top at works best.

mH = 2mfUp to RG corrections mH ! O(100GeV)
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Flat 5D

g2

! 3
øtl tr øtr tl

z = 0 z = L ~ (TeV)
-1

Goal: Study 4 fermion operator in bulk of compactiÞed 
5th dimension and possible bound states

[! ] = M2

In 5D:
[g2] =

1
M

6



Fermions in 5d
¥ In 5D dimensions 
¥ To get a chiral spectrum on an interval choose B.C. 

{ ! M , ! N } = 2 " MN

For example:ψ =
!

ψL

ψR

"
! R |z=0 ,L = 0

(! z ! m)" L |z=0 ,L = 0
with

massless Weyl fermion

Tower starting with mass! 5D =
!

! (0)

0

"
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#
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"

!
1
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So for                these are 5D Dirac fermions whose 
(massless) zero modes are standard model tops
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5D calculation

= ! (1)
KK ! (2)

KK+ +...

In KK picture:

=

So while some sums have closed forms, not every one 
does and a bulk fermion mass is not easily incorporated
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For some case the mass spectrum might be simple:
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5D mixed propagator 
loops
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Alternatively work in a ÔmixedÕ basis:
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5D Mixed propagators
(k/ + i ! 5" z ! m)! (z, z!; k) = i#(z ! z!)Need to solve:

DeÞning

(! 2
z + ( k2 ! m2))FL,R = i " (z ! z!)The FÕs satisfy:

For example, for a left-handed chiral zero mode

Fl,R =
! i

2! sin ! L
[cos! ((L ! |z ! z! |) ! cos! ((L ! (z + z!))]

Where χ !
√
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"
=

!
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"
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5D loops

We are interested in the running of the parameters so we 
take the high energy limit to Þnd dependance on the cutoff

Nonlocal terms appear in the effective lagrangian:

! L

0
dz

! L

0
dz!f (qE )e" qE |z" z! |H (z)H   (z!)

¥All divergences are local.

¥All divergences are parameterized by 4D cutoff. 

m0(! )HH   (0) + mL (! )HH   (L ) + m(! )
! L

0
dzHH   (z)

! L

0
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0
dz′f (q)eiq |z−z! |H (z)H   (z′)
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In bulk and on branes we naively expect divergent 
structure of noncompact 5 and 4 dimensions, respectively.

! m2
5d = g2(b1! 3 + b2! + Þnite)

! Z 2
5d = g2(a1! + Þnite)

! Z 2
4d = g2(c1 logΛ + Þnite)

! m2
4d = g2(d1! 2 + d2 log ! + Þnite)

But in effective brane Lagrangian not all the naive 
corrections appear 

Effective Lagrangian
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Effective Lagrangian
At one fermion loop we have:

All brane localized terms are related to fermion bulk mass:
¥ No quadratic divergences on the brane
¥ No 4D kinetic terms on brane
¥           terms are trivial for vanishing fermion mass(! zH )2
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g2

32! 2

!
log(L ! )

"
(3m2

l + 2ml mr + 3m2
r )H (0)H †(0)

+ ( ml ! mr )
#
H (0)H †(0)

$!
+ H !(0)H !†(0) + 0 " L

%
+

+2( ml ! mr )!
#
H (0)H †(0) ! H (L )H †(L )

$
&

13



Orbifold
If had instead taken the orbifold as a starting point we 
would have made an identiÞcation 
in order to produce a chiral spectrum

! (+ z) = ± " 5! (! z)

z = -L z = Lz = 0 
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m(z)

z = -L z = Lz = 0 

m(z) = m(! (z) ! ! (! z))Which is satisÞed by
which violates translational invariance.      

! L

! L
m(z) ø! (z)! (z)¥In order to have a mass term we need 

¥Any brane term also violates translational invariance

Orbifold
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Effective Lagrangian
Although           brane terms are not proportional to 

bulk fermion mass, they are trivial in the case of a 
vanishing bulk fermion mass.

(! zH )2

(! H" zH + ! (" zH)2)|z=0 ,L = 0
!

Varying the action we would obtain:

Which would be satisÞed by ! zH |z=0 ,L = 0
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Top Condensate in 5D
2 ways to break chiral symmetry now:

¥Bulk potential with critical gauge coupling g

L brane ! (ml " mr )
(
H (0)H   (0) " H (L)H   (L )

)

z = Lz = 0 
¥Brane potential with fermion masses:

z = Lz = 0 

V(z)

V(z)
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Fermion Condensate in 5D
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Can be solved exactly:
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For example for:
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Summary
¥Analyzed scalar condensate arising from a 4 

fermion operator with a compact extra dimension.

¥Performed one loop approximation in mixed basis.

¥Brane localized divergences are softer than 
expected.

¥Can break chiral symmetry with bulk or brane V. 

¥There are power law divergences so the model is 
Þne tuned.

¥Future work: phenomenology, model in warped 
(RS) space. 19


